Laboratory 1

(Due date: **002/003**: September 25th, **004**: September 26th, **005**: September 27th)

OBJECTIVES

- ✓ Introduce VHDL Coding for FPGAs.
- ✓ Learn to write testbenches in VHDL.
- ✓ Learn the Xilinx FPGA Design Flow with the Vivado HL: Synthesis, Simulation, and Bitstream Generation.
- ✓ Learn how to assign FPGA I/O pins and download the bitstream on the Nexys[™]-4 DDR Artix-7 FPGA Board.

VHDL CODING

✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

NEXYS[™]-4 DDR ARTIX-7 FPGA BOARD SETUP

- The Nexys-4 DDR Board can receive power from the Digilent USB-JTAG Port (J6). Connect your Board to a computer via the USB cable. If it does not turn on, connect the power supply of the Board.
- Nexys-4 DDR documentation: Available in <u>class website</u>.

FIRST ACTIVITY (100/100)

•	PROBLEM : A lock is opened ($f='1'$) only for three combinations of switches: 1001, 0111, 0001, where '1' represents the ON position of a switch and '0' the OFF position.	a	b	С	d	f
	1 represents the ON position of a switch and of the Orr position.	0	0	0	0	
	✓ Complete the truth table for this circuit:	0	0	0	1	
		0	0	1	0	
		0	0	1	1	
		0	1	0	0	
	✓ Simplify the Boolean expression:	0	1	0	1	
		0	1	1	0	
	f =	0	1	1	1	
	•	1	0	0	0	
		1	0	0	1	
		1	0	1	0	
		1	0	1	1	
		1	1	0	0	
		1	1	0	1	

- VIVADO DESIGN FLOW FOR FPGAs (follow this order strictly):
 - ✓ Create a new Vivado Project. Select the **XC7A100T-1CSG324 Artix-7 FPGA** device.
 - ✓ Write the VHDL code that implements the simplified Boolean expression. Synthesize your circuit (Run Synthesis).
 - ✓ Write the VHDL testbench to test every possible combination of the inputs.
 - ✓ Perform Functional Simulation (Run Simulation → Run Behavioral Simulation). **Demonstrate this to your TA.**
 - ✓ I/O Assignment: Create the XDC file.
 - Nexys-4 DDR Board: Use SW0, SW1, SW2, SW3 as inputs, and LEDO as the output. All I/Os are active high.
 - ✓ Implement your design (Run Implementation).
 - ✓ Do Timing Simulation (Run Simulation → Run Post-Implementation Timing Simulation). **Demonstrate this to your TA.**
 - ✓ Generate the bitstream file (Generate Bitstream).
 - ✓ Download the bitstream on the FPGA (Open Hardware Manager) and test. **Demonstrate this to your TA.**
- Submit (as a .zip file) the generated files: VHDL code, VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

TA signature:	Date:
---------------	-------

1 1 1 0 1 1 1 1